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< Traditional Autonomous Driving Pipeline: Highly
modularized with different subsystems for localization,
perception, actor prediction, planning & control.
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Fig 1: Traditional Autonomous Driving Pipeline

% Challenges:
> (Generalizability to newer environments.
> Hand-engineering of numerous parameters.

* Proposed Solution:
> Deep Reinforcement Learning for autonomous driving.
> Potential generalizability to unseen scenarios enabling
scalability with reduced engineering efforts.

CARLA Simulator

\/

< CARLA: Open source urban driving simulator for
autonomous driving research
> Diverse sensor suite,

various environmental

conditions, configurable static/dynamic actors with
maps generation.

> Sensor suite comprises of LIDAR, RGB camera,
semantic camera, depth sensors and GPS.

Fig 2:Left: RGB Image, Middle: Semantic Image, Right: Waypoints

RL Formulation

Model-free on-policy RL formulation using Proximal
Policy Optimization (PPO) [3] algorithm

 Input observations:
> Latent Representation of top-down semantically
segmented (SS) Image:

-~

h = Q(Ssimage)

> Waypoint Features computed using agent’s current
pose and next n waypoints:

W = f(p7 W1, W2, ..., Wn)
 Reward function components:

R:R3+Rd+I(C)*RC

> Speed reward

Rs=axu
> Trajectory distance penalty
Rd — —ﬁ * d
> Collision penalty
R.=—yxu—9

% Output Actions
> Steer
> Target Speed
> For better stability, we use PID controller that outputs
throttle & brake given current speed & target speed.

Experimental Setup

N/
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tasks:
Navigation

4 increasingly difficult

(a) Straight (b) One-Turn
(d) Navigation with dynamic obstacles

% 25 goal-directed scenarios for each of the tasks.

% Training is performed in Town 01 & testing in Town02.

% Pre-train convolutional auto-encoder (AE) for learning
latent representation of SS image.

* Finetune AE to learn better input representation that
aids in learning a better policy.

% Train policy network and AE simultaneously.

driving

(€)

Decoder Network —
' Conv Layers y
Reconstructed
Encoder Network SS image
L 400 16 64 32 16 g

(400) 64

 AE Embedding (400)

IW

éWaypoint Feawres (1)

Input | f
SS image 16 32 64 16

400

64

)

Policy Input Policy Network
Fig 3: Our Proposed architecture block diagram

Our proposed architecture & its two variants:

> WRL: PID controller outputs only throttle to control speed; Pretrain task (d) with task (c); Collision penalty set
to zero.

> WRL+: PID controller outputs both throttle & brake; Pretrain on a simple scenario to learn how to brake;
Frameskip of 10; Scale the network output.

Results & Discussion

 Baselines: CARLA RL [1], Controllable Imitative Reinforcement Learning (CIRL) [2]

o

* Input Differences: RGB images v/s semantic segmented (SS) images, high level navigation features v/s low
level waypoint features.

“ Benchmark: CARLA benchmark with more stringent and realistic evaluation to terminate episode on collision.

< Results:

> Significant improvement in performance on all tasks compared to CARLA RL [1].

> Even though the CIRL baseline [2] has an advantage of pre-training using imitation learning on expert data,
our approach achieves similar performance on training from scratch.

Task Training Conditions (Town 01) New Town (Town 02) New Weather (Town 01) New Town/New Weather (Town 02)
CARLA CIRL WRL WRL+ CARLA CIRL WRL WRL+ CARLA CIRL WRL WRL+ CARLA CIRL WRL WRL+
Straight 89 98 100 100 74 100 100 100 86 100 100 100 68 98 100 100
One Turn 34 97 100 99 2, %l 100 99 16 94 100 99 20 82 100 99
Navigation 14 93 99 99 3 33 97 94 2 86 99 99 6 68 97 94
%‘yﬁfﬁg“ 7 8 65 79 2 41 46 60 > 80 65 79 4 62 46 60

Table 1: Quantitative comparison with state-of-the-art approaches on CARLA benchmark. The table reports percentage (%) of successfully completed
episodes in each task. The reported approaches are CARLA RL baseline (CARLA) [1], CIRL [2], and our waypoint based DRL variants WRL & WRL+.

Task (c): Navigation (WRL) Task (d): Navigation with Dynamic Obstacles
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Fig 4: Total Success Episodes and Total Rewards v/s Timesteps for WRL
in Task (c) (Navigation).

Fig 5: Total Success Episodes v/s Fig 6. Total Rewards v/s Timesteps
Timesteps for WRL & WRL+ in Task (d) for WRL+ in Task (d) (Navigation
(Navigation with dynamic obstacles). with dynamic obstacles).

Note: The shaded region corresponds to the minimum and maximum values showing variation across 3 runs.

Future Work

» Comprehensive ablation study to analyze the effect of each component change in WRL+ that improved its
performance compared to WRL.
* Learn better state representations to encode other dynamic actors intent to perform better with dynamic actors.
% Compare across other model-free RL algorithms like SAC, DDPG, TD3.
Develop approaches to improve the sample efficiency of the current model-free RL algorithms.
» Explore meta-reinforcement learning algorithms to further improve sample efficiency.
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